Fast Directional Computation for the High Frequency Helmholtz Kernel in Two Dimensions

نویسنده

  • Björn Engquist
چکیده

This paper introduces a directional multiscale algorithm for the two dimensional N body problem of the Helmholtz kernel with applications to high frequency scattering. The algorithm follows the approach in [Engquist and Ying, SIAM Journal on Scientific Computing, 29 (4), 2007] where the three dimensional case was studied. The main observation is that, for two regions that follow a directional parabolic geometric configuration, the interaction between the points in these two regions through the Helmholtz kernel is approximately low rank. We propose an improved randomized procedure for generating the low rank representations. Based on these representations, we organize the computation of the far field interaction in a multidirectional and multiscale way to achieve maximum efficiency. The proposed algorithm is accurate and has the optimal O(N logN) complexity for problems from two dimensional scattering applications. We present numerical results for several test examples to illustrate the algorithm and its application to two dimensional high frequency scattering problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Directional Algorithm for High Frequency Acoustic Scattering in Two Dimensions∗

This paper is concerned with fast solution of high frequency acoustic scattering problems in two dimensions. We introduce a directional multiscale algorithm for the N -body problem of the two dimensional Helmholtz kernel. The algorithm follows the approach developed in [Engquist and Ying, SIAM J. Sci. Comput., 29 (4), 2007], where the three dimensional case was studied. The main observation is ...

متن کامل

Fast Directional Computation of High Frequency Boundary Integrals via Local FFTs

The boundary integral method is an efficient approach for solving time-harmonic acoustic obstacle scattering problems. The main computational task is the evaluation of an oscillatory boundary integral at each discretization point of the boundary. This paper presents a new fast algorithm for this task in two dimensions. This algorithm is built on top of directional low-rank approximations of the...

متن کامل

A wideband fast multipole method for the Helmholtz equation in three dimensions

We describe a wideband version of the Fast Multipole Method for the Helmholtz equation in three dimensions. It unifies previously existing versions of the FMM for high and low frequencies into an algorithm which is accurate and efficient for any frequency, having a CPU time of O(N) if low-frequency computations dominate, or O(N logN) if high-frequency computations dominate. The performance of t...

متن کامل

An Implementation of Low-Frequency Fast Multipole BIEM for Helmholtz’ Equation on GPU

Acceleration of the fast multipole method (FMM), which is the fast and approximate algorithm to compute the pairwise interactions among many bodies, with graphics processing units (GPUs) has been investigated for the last couple of years. In view of the type of kernel functions, the non-oscillatory kernels (especially, the Laplace kernel) were studied by many researchers (e.g. Gumerov), and the...

متن کامل

Fast directional algorithms for the Helmholtz kernel

This paper presents a new directional multilevel algorithm for solving N-body or N-point problems with highly oscillatory kernels. We address the problem by first proving that the interaction between a ball of radius r and a well-separated region has an approximate low rank representation, as long as the well-separated region belongs to a cone with a spanning angle of O(1/r) and is at a distanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008